publications

(2023). Stochastic stiffness identification and response estimation of Timoshenko beams via physics-informed Gaussian processes. Prob. Eng. Mech., 74, 103534.

Preprint Cite Project DOI

(2023). Coupled mumerical simulation of liquid sloshing dampers and wind-structure simulation model. J. Wind Eng. Ind. Aerodyn., 240, 105505.

PDF Cite Project DOI

(2023). Physics-informed Gaussian process model for Euler-Bernoulli beam elements. Proc. IABSE Symp. Istanbul, Türkiye.

PDF Cite

(2022). IABSE Task Group 3.1 benchmark results. numerical full bridge stability and buffeting simulations. Struct. Eng. Int., 0, 1-12.

PDF Cite DOI

(2022). Physics-informed Gaussian process model for Euler-Bernoulli beam elements. Proc. IABSE Symp. Prague, Czech Republic.

PDF Cite

(2022). Data-driven aerodynamic analysis of structures using Gaussian Processes. J. Wind Eng. Ind. Aerodyn., 222, 104911.

Preprint Cite Code Project DOI

(2021). Super-long span bridge aerodynamics benchmark: additional results for TG3.1 Step 1.2. Proc. IABSE Cong. Ghent, Belgium.

PDF Cite DOI

(2020). Comparison metrics for time-histories: Application to bridge aerodynamics. J. Eng. Mech., 146, 04020093.

PDF Cite Code Project DOI

(2020). Prediction of aeroelastic response of bridge decks using artificial neural networks. Comp. Struct., 231, 106198.

PDF Cite Project DOI

(2020). Advancements in vortex particle methods for aeroelastic analysis of line-like structures. Proc. Baustatik – Baupraxis 14, Stuttgart, Germany.

PDF Cite DOI

(2020). Synergistic framework for analysis and model assessment in bridge aerodynamics and aeroelasticity. PhD Thesis, Bauhaus-Universität Weimar, ISBN:978-3-95773-284-2.

PDF Cite

(2019). A CFD study on the influence of free-stream deterministic gusts on the critical flutter velocity of streamlined bridge decks. Proc. IABSE Cong. New York City, USA.

PDF Cite DOI

(2019). Super-long span bridge aerodynamics: On-going results of the TG3.1 benchmark test – Step 1.2. Proc. IABSE Cong. New York City, USA.

PDF Cite DOI

(2019). Determination of complex aerodynamic admittance of bridge decks under deterministic gusts using the Vortex Particle Method. J. Wind Eng. Ind. Aerodyn., 193, 103971.

PDF Cite Project DOI

(2019). Complete framework of wind-vehicle-bridge interaction with random road surfaces. J. Sound Vib., 458, 197-217.

PDF Cite DOI

(2019). A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks. R. Soc. open sci., 6, 181848.

PDF Cite Project DOI

(2018). Quantification of the influence of aerodynamic model assumptions for dynamic analyses of bridges. Proc. 40th IABSE Symp. Nantes, France.

PDF Cite DOI

(2018). Super-long span bridge aerodynamics: First results of the numerical benchmark tests from Task Group 10. Proc. 40th IABSE Symp. Nantes, France.

PDF Cite DOI

(2018). An active turbulence generator based on the Vortex Method for simulation of a complex aerodynamic admittance for bridge decks. Proc. CWE7. Seoul, Republic of Korea.

PDF Cite

(2018). Influence of real material properties on the response of a numerical model: case study concrete pole. Bautechnik, 95, 111-122 (in German).

PDF Cite Project DOI

(2017). Methods for flutter stability analysis of long-span bridges: A review. Proc. ICE - Bridge Eng., 170, 271-310.

PDF Cite Project Project DOI

(2016). Influence of aerodynamic model assumptions on the wind-vehicle-bridge interaction. Proc. 19th IABSE Cong. Stockholm, Sweden.

PDF Cite DOI

(2016). Monitoring the structural response of reinforced concrete poles along high-speed railway tracks. Proc. RILEM Conf. Lyngby, Denmark.

PDF Cite

(2016). Comparative study of semi-analytical and numerical methods for aerodynamic analysis of long-span bridges. Proc. BBAA8. Boston, USA.

PDF Cite

(2016). Modelling techniques for buffeting analysis of long-span bridges. Proc. IABSE Conf. Guangzhou, China.

PDF Cite DOI

(2015). Structural optimization of composite structures using an energy method. Proc. IABSE Conf. Geneva, Switzerland.

PDF Cite DOI

(2015). Structural optimization using the energy method with integral material behaviour. Proc. IKM20, Weimar, Germany.

PDF Cite DOI